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Under time pressure, it is usually not possible to respond quickly and accurately at the same time.
Therefore, people must trade speed for accuracy, depending on the current payoff conditions. Ideally,
they should choose a speed–accuracy tradeoff (SAT) that optimizes their monetary reward. However, this
is hardly the case. Rather, persons exhibit an accuracy bias, which is often disadvantageous. To further
investigate the role of errors for optimizing reward, we conducted a flanker-task study with different pay-
off and framing conditions. Whereas the reward for correct responses always increased continuously with
speed, the costs of errors varied. In three of four conditions, responding very fast, even with low accuracy,
was favorable. Furthermore, in addition to the usual gain framing, half of our participants were instructed
according to a loss frame. Whereas framing had little effect on performance, we found a substantial accu-
racy bias. Only in the most extreme condition some participants overcame their bias and responded very
quickly. To examine how SAT strategies differed between participants, we modeled the performance with
a sequential-sampling model. The results suggest that various mechanisms were involved in realizing spe-
cific SATs. However, they were hardly applied to optimize reward. Rather, participants seem to have opti-
mized their well-being.

Public Significance Statement
For optimizing reward under time pressure (e.g., at the stock market), it is sometimes favorable to
trade accuracy for speed. However, this is not what persons usually do. Rather, they exhibit an accu-
racy bias, that is, they are reluctant to make errors. In the present study we investigated effects of
payoff schemes and loss versus gain framing on speed–accuracy tradeoff and observed that even in
the most extreme condition, only few persons overcame their accuracy bias. Rather than optimizing
monetary reward, it seems that most persons optimized their well-being by avoiding making errors.

Keywords: speed–accuracy tradeoff, flanker task, accuracy bias, drift-diffusion model

In various tasks we are often faced with the problem of deciding
which action to perform next. A rational criterion for such deci-
sions would be to select the action that leads to an optimal out-
come with respect to our current goal. However, identifying a
corresponding action usually requires the collection and process-
ing of information about the current state of the environment and
predicting the consequences that possible actions would have,
which is effortful and takes time. In some situations, this is not
critical, but in others it is. In dynamic environments, for instance,

possible actions and/or their outcome might change over time. If
the situation is likely to get worse (e.g., in auctions, sports, or
stock markets), one must decide quickly which action to perform
in order to gain something or, at least, not to lose too much. How-
ever, due to the limited time for information processing, decisions
under time pressure usually have a reduced accuracy. Therefore,
decision makers must decide how much accuracy they are willing
to sacrifice for speeding up their responses. Details about such a
speed–accuracy tradeoff (SAT) are of great interest in various
areas of cognitive psychology and neuroscience (e.g., Bogacz et
al., 2010; Heitz, 2014).

An important question in this connection concerns reward opti-
mization. Often, the outcomes of decisions under time pressure
depend on a specific payoff scheme, that is, on the reward for fast
correct decisions and costs for errors. Do people select a SAT that
optimizes their reward? Evidence indicates that this is rarely the
case. Most people try to perform relatively accurately rather than
to optimize their reward (cf., Maddox & Bohil, 1998). This bias
suggests that errors play an important role in human behavior and
that there is a general tendency to avoid them. A plausible reason
for this accuracy bias is that errors elicit negative emotions
(Dignath et al., 2020). Thus, it seems that the SAT is not only
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determined by the current payoff scheme, but also by the decision
maker’s willingness to make errors. Because the role of errors for
the optimization of reward has rarely been investigated systemati-
cally, the aim of the present study was to add further evidence to
this issue by conducting an experiment where we systematically
varied the costs for errors. Furthermore, we speculated that the ac-
ceptance of errors might depend on the framing of the decision
task and, therefore, also compared the performance under a gain
framing with that under a loss framing (Tversky & Kahneman,
1981).
As an experimental paradigm, we used the flanker task (Eriksen

& Eriksen, 1974). In this two-alternative forced-choice task, a cen-
trally presented target item must be categorized by pressing a cor-
responding response button. However, along with the target,
irrelevant flanker items are presented, which are either congruent
or incongruent, that is, are associated with the correct or the wrong
response, respectively. Thus, incongruent flankers produce a
response conflict, which usually increases the response time (RT)
and error rate, depending on the efficiency of attentional conflict
control (Hübner et al., 2010). Accordingly, the flanker task allows
one to modulate the error rate and investigate how it is affected by
attention and reward. Hübner and Schlösser (2010), for instance,
found that monetary incentives improved attention, which
increased response speed without reducing accuracy.
To obtain deeper insights into the involved decision processes

and strategies in the various conditions examined, we also mod-
eled the data with a sequential sampling model. However, before
we report the results of the present study, we first consider the rel-
evant concepts in more detail.

Speed–Accuracy Tradeoff

For various tasks, reaching from perceptual categorization (e.g.,
Fitts, 1966; Ratcliff & Rouder, 2000; Swensson, 1972b) and mem-
ory retrieval (e.g., Banks & Atkinson, 1974; Kounios et al., 1994;
Reed, 1973; Wickelgren et al., 1980) to complex mental opera-
tions (e.g., Liesefeld et al., 2015), it has been shown that people
are able to deliberately trade speed for accuracy. The relation
between these two performance measures can be described by a
SAT function (SATF). A widely used method to obtain such a
function is to systematically vary the time available for performing
a task. For instance, participants might be required to respond
before a prespecified deadline. If the deadline is varied across con-
ditions, then a corresponding SATF can be visualized by plotting
mean accuracy against mean RT for the different deadlines (for an
overview see Heitz, 2014). An alternative method for varying
SAT is to apply different payoff schemes (see below). Moreover,
both methods can be combined. For instance, participants will get
some reward for a correct response, but only if it occurs before a
deadline.

Formal Models

To get an idea of how persons might control response speed and
accuracy, formal models are helpful. Historically, two-state mod-
els have been proposed first (cf. Heitz, 2014). According to these
models, responses result from two possible response modes: fast
guesses and slow stimulus-controlled decisions. Although such
models are supported by results of several studies (e.g., Swensson,

1972a; Swensson & Edwards, 1971; Yellott, 1971), it can be
assumed that fast guesses reach a relevant proportion only under
extreme time pressure, and/or when the reward for fast correct
responses outweighs the costs for errors (Heitz, 2014).

Therefore, to obtain a more general account of SAT, sequential
sampling models have been developed (e.g., Bogacz et al., 2006;
Busemeyer & Townsend, 1993; Fitts, 1966; Ratcliff, 1978, 1985;
Ratcliff et al., 2015). These models are based on the assumption
that information is extracted from the stimulus and accumulated
over time at a certain rate until evidence favoring the one or the
other response reaches a corresponding response threshold (also
called boundary or criterion). Thus, under time pressure, the dura-
tion of response selection can simply be reduced by lowering the
threshold, which is under voluntary control. However, because
evidence accumulation is a noisy process, a low threshold also
increases the probability that the wrong response is selected,
which reduces accuracy. Accordingly, a person can easily trade
speed for accuracy by simply adjusting the response threshold.

Dutilh et al. (2011) questioned that SATFs are continuous, that
is, that speed can be increased gradually at the cost of accuracy
until performance is at chance level (fast guessing), as compatible
with sequential-sampling models. Therefore, they proposed that
with increasing time pressure, relatively accurate behavior sud-
denly switches to guessing behavior, and introduced a correspond-
ing phase-transition model, combining sequential sampling and
fast guessing. Trimmer et al. (2008) went even a step further and
proposed a two-stage model. They assumed that two systems are
involved in response selection: A fast system that selects a
response on the basis of a single sample of evidence provided by
early perceptual information (e.g., low spatial frequencies), and a
slower and more accurate sequential-sampling system relying on
later information (e.g., high spatial frequencies). These two sys-
tems are combined in such a way that, if the fast system does not
select a response, sequential sampling starts. The Trimmer et al.
(2008) model is similar to the Dual-Stage Two-Phase (DSTP)
model of Hübner et al. (2010), which has also been applied for
modeling SAT (Dambacher & Hübner, 2015), and which is
described in more detail in the Modeling section.

Payoff Schemes and Optimization

As mentioned, SAT can also be influenced by a payoff scheme.
If combined with a deadline, there are different events that can be
rewarded or punished. More specifically, in addition to rewarding
timely correct responses, there are two types of errors that can be
punished: response errors and timeout errors. Accordingly, either
one of the two error types, or both can be punished (e.g., Dam-
bacher et al., 2011). A further possibility is to reward correct
responses and punish errors continuously, depending on their
speed (e.g., Swensson & Edwards, 1971). In the present study, we
applied such a scheme. For our objective, a continuous payoff
scheme had the great advantage that reward could be varied over a
wide range of RTs with little risk of observing timeout errors,
which were not in our focus.

As mentioned, an important question is to what extent decision
makers optimize their reward for a given payoff scheme. For
answering this question, though, one needs to know the objective
relations between speed, accuracy, and reward, which are mostly
difficult to compute. A common approach to solve this problem is
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to apply a sequential sampling model and derive how reward
varies with the response threshold, that is, with the SAT. The SAT
that maximizes reward can then be compared to those chosen by
participants in an experiment. In a specific application of the se-
quential sampling idea, Gold and Shadlen (2002) considered an
experimental paradigm, where, instead of the number of trials in a
block, as usual, the duration of a block is fixed. They hypothesized
that participants select a response threshold that optimizes the
reward rate, that is, the average number of rewards per unit of
time. Optimizing this rate is possible, because it is a concave func-
tion of the response threshold (Bogacz et al., 2006). However,
when Bogacz et al. (2010) tested the reward-rate hypothesis, they
found that their participants were slower and more accurate than
predicted by optimization.
Although examining the reward rate revealed some insight into

the performance in SAT experiments, the approach is rather spe-
cial. Evidence indicates that merely adjusting the response thresh-
old, as assumed, is not the only way to meet time pressure.
Decision makers might also adjust the time spent for stimulus
encoding, which not only affects the nondecisional time (see
below), but also the rate of evidence accumulation (Dambacher &
Hübner, 2015; Rae et al., 2014). Thus, effects of speed pressure
can be more diverse than often assumed.

Accuracy Bias and the Role of Errors

Although practice and specific instructions can improve reward
optimization in simple sensorimotor tasks (Evans & Brown,
2017), most studies found that participants are more concerned
about being accurate than about optimizing their reward (e.g.,
Bogacz et al., 2010; Pitz & Reinhold, 1968). Moreover, the devia-
tion of the achieved reward from the optimum increases with task
difficulty (Balci et al., 2011; Starns & Ratcliff, 2012), suggesting
that the more difficult the task, the more cautiously people
respond. In view of the cautious performance observed in a multi-
dimensional perceptual-categorization tasks, Maddox and Bohil
(1998) hypothesized that participants optimize a combination of
reward and accuracy and proposed their COBRA (competition
between reward and accuracy) model.
These results seem to indicate an accuracy bias, that is, the tend-

ency to weight accuracy more than speed. Several reasons have
been proposed why participants may care about accuracy (cf.
Bogacz et al., 2006). One reason could be compliance. Already
Swensson (1972a) argued that fast responses might be experienced
as fast guesses and, therefore, considered as cheating, which
evokes unpleasant feelings. Recently, Fiedler et al. (2020) pro-
posed a similar account. They argue that the accuracy bias is due
to the social surplus meaning of accuracy, which implies careful-
ness and responsibility. Speed and errors, in contrast, are associ-
ated with risk, carelessness, and sloppiness. Thus, the accuracy
bias could reflect a quasimoral norm.
The violation of such a norm also has psychophysiological con-

sequences. Studies show that response errors activate the defensive
motivational system, which, according to the affective-signaling
hypothesis elicit negative affect. Response errors produce, for
example, larger skin conductance responses and greater heart-rate
deceleration than correct responses, suggesting that they are per-
ceived as aversive and distressing events ( for overviews of the

physiological results and theories see Dignath et al., 2020; Koban
& Pourtois, 2014).

These results and considerations suggest that participants in a
SAT experiment do not try to optimize their monetary reward, but
rather their well-being, which presumably also includes to earn a sat-
isfactory amount of money. Consequently, the accuracy bias might
only be overridden in situations where speed and errors are associ-
ated with less negative associations and/or where reward is very
high, as, for instance, in the study of Swensson and Edwards (1971).

Gain Versus Loss Framing

As we have seen, errors in SAT experiments often result in losses.
Therefore, the accuracy bias might also be related to loss and risk
aversion observed in economic decisions. Risk aversion denotes the
tendency in monetary gambles to prefer options with a high win
probability, even if riskier alternatives have a higher expected value
(e.g., Dambacher et al., 2016; Tversky & Kahneman, 1992). A simi-
lar concept is loss aversion, which describes the phenomenon that
people prefer to avoid losses rather than make equivalent gains. The
assumed reason for this preference is that losses appear larger than
equivalent gains (Tversky & Kahneman, 1991).

For the objective of the present study the related framing effect
(Tversky & Kahneman, 1981) is most interesting. It shows that
choice performance can systematically be modulated by framing
the possible options in terms of gains or losses. Under a gain
frame, participants tend to prefer safe options and avoid risky
ones, whereas the opposite holds under a loss frame. Unfortu-
nately, up to now, framing effects have mainly been investigated
in the context of gambling (e.g., Rubaltelli et al., 2012; Shelley,
1994). Here, we extended the framing manipulation to a SAT
experiment and speculated that similar effects might also occur for
the acceptance of response errors. If, under a loss frame, loss is the
standard outcome whose amount can be reduced by fast responses,
then errors might have fewer negative connotations and, therefore,
are easier to accept. Thus, if persons under the usual gain framing
restrict their speed of responding to prevent errors and correspond-
ing unpleasant feelings, even if this is suboptimal with respect to
reward, then performance might be different under a loss framing.

The Present Study

The aim of the present study was to further investigate the accu-
racy bias and its effect on reward optimization under time pressure.
For this objective we varied the payoff scheme and the framing in a
flanker task. In four payoff conditions, reward for correct responses
increased in the same way continuously with response speed over a
relatively large time range. However, errors were punished differ-
ently. In two of the four conditions fast errors even produced a
reward. Our specific questions were to what extent participants opti-
mize their reward depending on error punishing and framing, and
which strategies they apply. Adjustments of the response threshold to
optimize reward would be compatible with simple sequential-sam-
pling models. However, there are also other mechanisms. For
instance, effort can be increased to mobilize further resources for
speeding up stimulus processing and motoric responding. Moreover,
especially in the flanker task, conflict resolution can be improved by
increasing attentional selectivity (Dambacher & Hübner, 2015; Hüb-
ner et al., 2010). Finally, it is also possible to guess on some trials.
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We expected that, due to the accuracy bias, most participants
will not optimize their reward. Nevertheless, we predicted strategy
differences between the payoff and framing conditions. Especially
under a loss framing and in the conditions with little or no costs
for fast errors participants should speed up responding and be
more willing to make errors for increasing their profit.
In addition to analyzing the data statistically, we also modeled

the data with a diffusion model for conflict tasks. This allowed us
to examine which strategies our participants applied.

Experiment

The design of our flanker-task experiment consisted of four
main conditions, each with an individual payoff scheme. In all
schemes, reward for correct responses increased continuously for
every millisecond decrease in RT within the range from 650 to
150 ms. However, the costs of errors differed between the
schemes. To promote an adaptation of performance, feedback was
provided after each trial and after each block.
Different participants were assigned to the four main conditions.

Additionally, the corresponding groups were split into two sub-
groups with a different framing for each. For one subgroup the
instruction set the focus on possible gains, whereas for the other
group the focus was directed to possible losses.

Method

Participants

Of main interest were the two main effects of framing and pay-
off. Although we had some experience with payoff effects (Dam-
bacher et al., 2011), the continuous payoff scheme applied here
was rather special. Moreover, experience with framing effects in
this specific context was lacking. Therefore, we planned to find
effects of medium size, which corresponds to f = .25 (Cohen,
1992) or to a partial-Eta squared (hp

2) of .059. Accordingly, we cal-
culated the necessary sample size for the between-factor with the
most factor levels (payoff condition) in a 2 3 4 between Analysis
of Variance (ANOVA) with both factors. For a = .05 and an
anticipated power of 1�b = .90 the program ss.2way in R’s pwr2
library (Lu et al., 2017) revealed a necessary sample size of 231
participants. However, the balancing of our design required at least
232 participants, resulting in 29 participants per cell. To take the
possibility into account that the data of some participants might
have to be excluded from the experiment (e.g., because they have
dropped out of the experiment), we increased the sample size to 32
participants per cell of the experimental design resulting in 256
participants overall. Accordingly, 256 participants were recruited
via an online system (SONA) at the University of Konstanz. For
their participation they could receive between 4 e and 20 e,
depending on their performance. Actually, the participants rece-
ived between 5.5 and 14.6 e.
The data of seven participants were excluded (three abandoned

the experiment; two had to stop due to technical issues during the
testing; two produced extreme data, compared to the rest of the
participants: one had an error rate of 71% at a mean RT of 305 ms,
while the other had an error rate of 52% at a mean RT of 890 ms).
The final sample consisted of 249 participants (176 female), whose
age ranged from 18 to 33 years (Mage = 22.7, SDage = 3.08).

Participants were informed that they are free to withdraw from the
study at any point in time without any negative consequences.
Informed consent in line with the 1964 Declaration of Helsinki
and its later amendments, as well as in agreement with the ethics
and safety guidelines at the University of Konstanz was obtained
from all participants as check mark on a corresponding informa-
tion page before the experiment started.

Apparatus

Participants were tested in groups of up to 10 at a time in a group
lab. Stimulus presentation and response recording were controlled by
personal computers. The stimuli were presented on 23.8-in. color
monitors (Fujitsu B248T) with a resolution of 1,920 3 1,080 pixels
and a refresh rate of 60 Hz. Each screen was located centrally on a
desk in front of a participant with a viewing distance of about 60 cm.
The experiment was programmed in JavaScript and ran in a Google-
Chrome browser (Versions 64 to 70) under Windows 10. Responses
had to be entered via clicking mouse buttons.

Stimuli and Task

Combinations of the letters B, D, K, and H served as stimuli,
which were presented in white on a black background. They were
divided into two categories (B, K and D, H), which were mapped
to a mouse key, respectively, counterbalanced across participants.
The stimuli were approximately 1.84° (width) by 2.49° (height)
visual angle in size. On each trial, three horizontally arranged let-
ters were presented, with the outer two always being identical
(e.g., B K B). The distance (eccentricity) of the outer letters to the
middle letter was about 2.62° visual angle (center to center).

The task of the participants was to identify the category of the
central letter (target) by clicking the corresponding mouse button.
The stimuli (letter combinations) could be congruent or incongru-
ent, depending on whether the flankers were mapped to the same
button as the target (e.g., B K B), or not (e.g., B H B).

Procedure

At the beginning of each trial a fixation cross was presented at
the center of the screen for 300 ms (see Figure 1), followed by a
blank screen for 200 ms. Then the stimulus appeared and remained
on screen until a response was given. After the response, there was
visual feedback for 1,500 ms about the response time and the
gained or lost points (see below) on that trial. In case of an error, a
tone was played concurrently for about 100 ms. Finally, a black
screen appeared for 500 ms, before the next trial started.

Participants started the experiment with two short practice
blocks of 16 trials each, in which they could not gain or lose any
points. Then, participants ran through 20 test blocks of 32 trials,
which resulted in 640 experimental trials overall. After each block,
participants received summarized feedback about their perform-
ance (see below).

Conditions

There were four payoff conditions, to which different partici-
pants were assigned in sequential order. On each trial, participants
could collect points, depending on the payoff condition and their
performance (see Figure 2). Responses faster than 150 ms resulted
in zero points. Correct responses with RTs between 150 and 650
ms resulted in 500–(RT–150) points, and those with RTs larger
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than 650 ms in zero points. Thus, for a correct response the partici-
pants received between 0 and 500 points, depending on RT.
Whereas the scheme for correct responses was identical in all

four payoff conditions, it differed with respect to errors (see Figure
2). In Condition 1 (N = 63) errors with an RT between 150 and
650 ms resulted in 150�RT points, and errors slower than 650 ms
in �500 points. Thus, the costs for an error increased with RT
from 0 to a maximum of 500 points. In Condition 2 (N = 60) errors
always led to zero points. In Condition 3 (N = 62) errors between
150 and 650 ms produced 400�RT points. Accordingly, errors
between 400 and 650 ms produced costs from 0 to 250 points,
while faster ones between 150 and 400 ms resulted in gains from 0
to 250 points. Errors slower than 650 ms resulted in �250 points.
Finally, in Condition 4 (N = 64) errors between 150 and 650 ms
produced 800 � 2·RT points. Consequently, slower errors between
400 and 650 ms produced costs from 0 to 500 points, while faster
ones between 150 and 400 ms resulted in gains from 0 to 500
points. Errors slower than 650 ms resulted in �500 points.
The four payoff groups were randomly separated into a gain-frame

and a loss-frame group, respectively, which received corresponding
instructions and feedback. Participants in the gain-frame group were
told that they start each trial with zero points, but that they gain one
point for each millisecond they respond faster than 650 ms, given the
response is correct. Participants in the loss-frame group were told
that they start each trial with a balance of 500 points but will lose
one point for each millisecond they respond slower than 150 ms,
given the response is correct. The consequences of errors were
framed accordingly. That is, participants in the gain-frame group
received feedback stating that they “earned”minus X points, whereas
those in the loss-frame group were told that they lost X points.

After each block, participants received feedback about their
mean RT and accuracy (gain frame), or error rate (loss frame).
Moreover, they were informed about the overall points gained
(gain frame) or lost (loss frame) so far. At the end of the experi-
ment, the collected points were summed up across all trials and
multiplied by .005 e. The theoretical maximum number of points
that could be collected during the experiment was 320,000 (500
points on each of the 640 trials), which corresponds to 16 e. To-
gether with the 4 e base compensation, this would have resulted in
a maximum overall payment of 20 e.

Results and Discussion

Less than 1 percent (.97%) of all RTs were smaller than 150
ms, and 4.94% were larger than 650 ms. RTs greater than 2 s were
considered as outliers and excluded from the analyses (less than
.001% of all data). Furthermore, errors (mean error rate: 13.3%)
were excluded from RT analyses. Figure 3 shows the mean RTs
and error rates observed in the eight main conditions and the two
congruency conditions.

The program ezANOVA from the R library ez (Lawrence,
2016) was used for computing separate 4 3 2 3 2 ANOVAs with
the between-participants factors payoff condition (1, 2, 3, and 4)
and framing (gain and loss), and the within-participants factor con-
gruency (congruent and incongruent) for the RTs and error rates,
respectively. Posthoc t-tests were calculated to further examine
differences between individual conditions.

The results of the ANOVAs are presented in Table 1. As can be
seen, payoff produced a highly significant main effect in the error
rates (9.49%, 11.4%, 13.7%, and 18.6%). Posthoc t-tests revealed

Figure 1
Sequence of Events on a Trial of the Experiment

Note. In this example trial, the stimulus display consists of the target letter H and two copies of the flanker letter B. After the
response, and depending on the framing, gained points (Gewonnene Punkte) or lost points (Verlorene Punkte) were displayed on
the feedback screen, respectively, together with the response time (Reaktionszeit).
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that Conditions 1 and 2, and Conditions 2 and 3 did not differ sig-
nificantly (see Table 2). In the RTs the main effect of payoff (443
ms, 431 ms, 435 ms, and 412 ms) was also significant. According
to the posthoc tests, Conditions 1 and 4 differed significantly. The
main effects of framing were not significant. The interactions with
congruency were marginally significant. They reflect the tendency
toward smaller congruency effects under a gain than under a loss
framing. Moreover, the three-way interaction with congruency and
payoff was significant in the error rates, which however, is diffi-
cult to interpret (see Figure 3). The main effect of congruency was
significant in the RTs (congruent: 422 ms, incongruent: 439 ms) as

well as in the error rates (congruent: 11.5%, incongruent: 15.1%).
Furthermore, the interaction between congruency and payoff was
significant in the error rates. The congruency effect (1: D 3.21%,
2: D 4.40%, 3: D 3.91%, and 4: D 2.59%) was smallest in Condi-
tion 4, and largest in Condition 2, where errors produced no costs.
However, as indicated by the mentioned three-way interaction,
this pattern was further modulated by the framing.

Together, our results show that varying the costs of response
errors had little effect on mean performance. Across the different
payoff conditions mean accuracy merely varied from 81% to 91%,
while mean RTs varied from 412 ms to 443 ms. These results support

Figure 2
Payoff Schemes for Correct Responses and for Errors in the Four Payoff Conditions

Note. The payoff formulas in the headings are valid only for RTs between 150 and 650 ms. See text for further details. See the online
article for the color version of this figure.
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the idea of an accuracy bias. Irrespective of the payoff scheme, most
participants were reluctant to make errors, and, therefore, responded
not as fast as required to optimize their monetary reward. However,
up to now we only considered mean performance across participants.
For examining to what extent participants differed in their SAT, we
also analyzed individual performance.
To see which SAT participants used in the different conditions,

we visualized the individual performance by placing mean RT and
accuracy of each participant in a speed–accuracy space. Addition-
ally, we color coded the sum of gained points (reward score)
earned by each participant. The results for the different payoff
conditions are shown in Figure 4. Because framing had only small
effects, the data of both framing groups were merged.

By considering Figure 4 it becomes obvious that SAT varied
across participants. Whereas some participants favored accuracy
over speed, others responded faster at the cost of accuracy. How-
ever, it can also be seen that in the first three payoff conditions the
range of SAT was rather restricted. Participants barely performed
with an accuracy below 75%. Only in Condition 4, a substantial
number of participants performed with a lower accuracy. Yet,
even in this condition, many participants favored a relatively high
accuracy. That is, they performed like the participants in the other
conditions.

An interesting question is how much reward the individual par-
ticipants achieved relative to the maximum possible reward. To
approach an answer to this question, we entered the data from
Condition 4 into linear regressions to estimate an average SATF.

Figure 3
Average Performance in the Eight Main Conditions (Payoff Schemes and Framings)
of the Experiment and the Two Congruency Conditions

Note. Error bars represent 95% within-participant confidence intervals (Loftus & Masson, 1994;
Morey, 2008). See the online article for the color version of this figure.

Table 1
Result of the Overall ANOVAs

Predictor dfN dfD F p hp
2

Response times
Payoff (P) 3 241 2.93 ,.05* .035
Framing (F) 1 241 1.04 .301 .004
Congruency (C) 1 241 446 ,.001*** .649
P 3 F 3 241 1.83 .142 .022
P 3 C 3 241 0.98 .405 .001
F 3 C 1 241 3.69 .06 .015
P 3 F 3 C 3 241 0.97 .406 .012

Error rates
Payoff (P) 3 241 11.2 ,.001*** .112
Framing (F) 1 241 0.01 .956 .000
Congruency (C) 1 241 328 ,.001*** .576
P 3 F 3 241 0.52 .669 .006
P 3 C 3 241 4.13 ,.01** .049
F 3 C 1 241 3.23 .074 .013
P 3 F 3 C 3 241 2.77 ,.05* .034

Note. ANOVA = Analysis of Variance.
* p , .05. ** p , .01. *** p , .001.
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As mentioned in the Introduction, SATFs are usually measured
directly by varying speed pressure within participants. The indi-
vidual SATFs then reflect the participants’ abilities and strategies.
With our between-participants design, however, this was not pos-
sible. Therefore, we used linear regression analyses to estimate a
representative SATF from the SATs of the different participants.
In addition to generally excluding RTs . 2 s, the data of very
slow (mean-RT . 550 ms) participants (three) were excluded
from the regression analyses to improve representativeness. The
correlation between the remaining RTs and accuracies was .865,
t(59) = 13, p , .001. The considered SATF ranges from 50% (RT
190 ms) to 100% accuracy (RT 515 ms). Because there was no
reason to assume that the same SATs could not also have occurred
in the other payoff conditions, we considered the fitted SATF as
representative for all corresponding conditions. Accordingly, we
plotted the regression line also in the panels of the other conditions
(see Figure 4). As can be seen, the SATF estimated from the data
in Condition 4 also fits the data in the other conditions rather well.
To compute the reward along the SATF, we needed a function

that estimated for each payoff scheme the sum of points that is
obtained for a given mean RT and mean accuracy (AC). As solu-
tion we constructed the function sp:

sp RT;ACð Þ ¼ AC � poc RTð Þ þ 1� ACð Þ � poe RTð Þ� �
� NT;

where poc and poe are our payoff functions that return, for a given
RT, the payoff for a correct and incorrect response, respectively.
NT is the number of trials in the experiments. If we apply this
function to predict for each participant the sum of gained points in
Condition 4, and correlate the results with the actually collected
points, then we find a correlation of .97, t(62) = 29, p , .001. This
shows that the function works very well.
With the function sp it was possible to compute the sum of

points that could have been gained for the different SATs along
the SATF. In Figure 4 the corresponding sums along the SATF are
coded by color (for details see below). Although this gives a first
impression how the reward increases with response speed, the
exact relations are difficult to see. Therefore, we also computed

detailed reward functions showing how reward changes with SAT
along the SATF. Figure 5 shows the functions for the four payoff
conditions. As can be seen, for Condition 2, where errors have no
costs, the reward function is slightly concave. For the other condi-
tions, however, the reward score increases monotonously with
speed along the SATF. The increase is smallest for Condition 1
and steepest for Condition 4. The reward functions show that,
except in Condition 2, responding very fast would have increased
the reward despite the reduced accuracy. Thus, these functions are
generally informative for assessing the chosen payoff schemes in
the present experiment.

The SATF estimated from Condition 4 in combination with the
reward functions can be used to examine to what extent our partic-
ipants optimized their reward in the different payoff conditions.
Comparing the absolute reward across conditions makes little
sense, because it largely depends on the payoff scheme. However,
we can compare the obtained reward within each condition relative
to the possible maximum in that condition. In Figure 4 the differ-
ent sums of points are coded by color in such a way that the color
changes from dark red (light gray) representing the maximum
reward in a condition, either obtained by a participant or present
along the SATF, to dark blue (black), which indicates zero reward.
Thus, the range of reward along a SATF represents only part of
the whole range. It largely coincides with the range of the corre-
sponding reward function in Figure 5. For instance, the reward in
Condition 1 along the SATF ranges from 93,132 points for 100%
accuracy to 133,515 points for 50% accuracy. Obviously, in this
condition reward could be increased only slightly by responding
very fast. This could have been one reason why no participant was
motivated to respond very fast. The maximum number of points
(146,658) in this condition, however, was achieved by an efficient
participant, who performed relatively fast (375 ms) with an accu-
racy of 91%. Despite the relatively high reward, the performance
nevertheless indicates an accuracy bias. It is highly likely that this
participant could have responded faster and thereby increased the
reward.

The situation was similar in Condition 2, where errors were not
punished. However, because of the concave reward function (see

Table 2
Pairwise Comparisons Between the Payoff Conditions

Conditions df t p hp
2

Response times
1 versus 2 121 –1.43 .16 .06
1 versus 3 123 –0.96 .34 .03
1 versus 4 94.3 –2.60 ,.05* .17
2 versus 3 120 –0.38 .70 .01
2 versus 4 105 –1.50 .14 .07
3 versus 4 109 –1.76 .08 .09

Error rates
1 versus 2 121 1.75 .08 .08
1 versus 3 103 3.11 ,.01** .24
1 versus 4 84.3 4.85 ,.001*** .43
2 versus 3 120 �1.67 .09 .08
2 versus 4 87.6 3.80 ,.001*** .32
3 versus 4 109 2.35 ,.05* .15

Note. When the assumption of homogeneous variances was violated, Welch two-samples t-tests were com-
puted and dfs corrected.
* p , .05. ** p , .01. *** p , .001.
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Figure 5), performance can be considered as somewhat closer to
optimal compared to Condition 1. For Condition 3 the maximum
reward (200,121 points, 50% accuracy, RT 190 ms) lies on the
SATF (obtained minimum reward: 53,054 points, 92% accuracy,
RT 599 ms). Accordingly, if a participant, represented by the
SATF, had responded very fast, she/he would have received a
higher reward than the most successful participant (172,124
points, 91% accuracy, RT 361 ms).
It should be noted that our estimated SATF represents the SATF

of a person with average information-processing capacity and

motoric skills. Accordingly, all participants, whose data point lies
above or below the SATF in Figure 4, are more or less efficient,
respectively. That is, for a given RT, more efficient participants
were more accurate than an average participant. The opposite holds
for less efficient ones. What we do not know, is to what extent the
SATF of more or the less efficient participants run parallel to the fit-
ted SATF over the whole range and whether all participants would
have been able to deliberately realize any SAT along their SATF
from perfect accuracy to almost guessing. However, from what has
been observed in other SAT studies, it is likely that this would have

Figure 4
Participants’ Mean RT and Accuracy for the Four Payoff Conditions

Note. Colors represent the sum of gained points (in thousands) collected by the individual
participants. The lines show the SATF estimated from the data in Condition 4. RT = response
time. See the online article for the color version of this figure.
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been possible. In any case, it is reasonable to assume that efficient
participants who performed for a given accuracy faster than average
(i.e., high-accuracy persons left of SATF) could have responded
even much faster and thereby increased their reward, at least in
most payoff conditions. Moreover, in Condition 4, where the
obtainable reward increased along the SATF from a minimum of
100,951 points to a maximum of 238,224 points, at least some par-
ticipants responded very quickly. The most successful participant,
whose SAT is located close to the SATF, achieved 211,545 points
(accuracy 53%, RT 238 ms). This demonstrates that fast responding
was principally possible, and we see no reason why not all people,
at least those with high capacity, should be able to do so.
Overall, our analyses indicate that people can deliberately

choose their SAT from a wide range. However, accuracy is sacri-
ficed for speeding up responding only when the increase in reward
is rather large. And even in such conditions only some participants
overcome their accuracy bias. What we still do not know is how
participants controlled their SAT. Did they merely adjust their
response threshold or also adapt other mechanisms? To answer
this question, we modeled part of our data.

Modeling and Identifying Possible Strategies

To examine how our participants realized their individual SAT,
we modeled the data of Condition 4. In this condition, where fast
errors even produced a large reward, the range of SATs was most
extended across participants and includes the SATs observed in the
other conditions. Thus, results obtained with the data of Condition
4 can be generalized. The obtained model parameters were then
entered into a cluster analysis to identify possible strategies applied.
As models, we considered current sequential-sampling models

for conflict tasks: the Dual-Stage Two-Phase (DSTP) model (Hüb-
ner et al., 2010), the Diffusion Model for Conflict tasks (DMC,

Ulrich et al., 2015), and the Shrinking-Spotlight (SSP) model
(White et al., 2011). Modeling revealed that for each model there
were some participants whose data could only be fitted very
poorly. Therefore, we decided to exclude participants with an esti-
mated average deviation of 5% per data point from further analy-
ses. The application of this threshold led to the exclusion of seven
participants for the DSTP model, of 15 participants for the DMC
model, and of 25 participants for the SSP model. Moreover, a clus-
ter analysis computed on the model parameters to identify com-
mon strategies resulted in three clusters for the DSTP model, and
two clusters for each of the other two models. Because the DSTP
model revealed the most complete picture of possible strategies,
we will only report the results of this model.

The DSTPModel

As the other models for conflict tasks, the DSTP model is based
on a response-selection mechanism, implemented as diffusion pro-
cess (cf. Ratcliff, 1978). This process is characterized by a drift
rate m, reflecting the change in evidence available for response A
relative to response B during a prespecified time interval, and by
two corresponding thresholds of evidence A and B, with separation
a and B , A. Responses A and B usually represent a correct and a
wrong response, respectively. Noisy samples of the evidence are
accumulated beginning at starting time t0 with starting value X0,
until threshold A or B is reached. The duration of this process is
the decision time. It is assumed that the observed response time is
the sum of this decision time and some nondecisional time Ter,
representing the duration of processes such as stimulus encoding,
response execution, and so forth The complexity of the diffusion
process can further be increased by assuming that the starting
value, the nondecisional time, and/or the rate vary randomly across
trials according to specific distributions (Ratcliff & Rouder, 1998).

Figure 5
Example Speed–Accuracy Reward Functions for the Four Payoff Conditions

Note. The functions are based on SATF fitted to the data of Condition 4 (see the text for
details). This SATF also determines the shown RT range. See the online article for the color
version of this figure.
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Here, for simplicity, these assumptions were dropped. Moreover,
we generally assumed that the thresholds are symmetrical around
0, that is, B = –A, with A . 0 and X0 = 0. In this special case,
where the separation a is 2·A, a will also be called response crite-
rion. Thus, in this simple form the drift-diffusion model has three
parameters: m, a, and Ter.
The specific characteristics of the DSTP model are the differen-

tiation of two discrete stages of information selection (early, late)
and of two corresponding phases of response selection. The first
phase starts with the rate of evidence provided by the early stage of
information selection. This stage is already selective, for instance
by applying perceptual (e.g., spatial) filters, although selectivity is
far from perfect. For the first phase of response selection (RS1) it is
assumed that the corresponding drift rate, mRS1, is composed of two
component rates, mt and mf, which are the result of the early stage of
stimulus selection. The components represent the evidence pro-
vided by the target and the flankers in favor of the correct response
A, respectively. Both components sum up to the total rate mRS1 =
mt þ mf. The component mf is positive, if the flankers are response
compatible, but negative, if they are incompatible. Thus, the rate
mRS1 is usually smaller for incongruent than for congruent stimuli
and can even be negative.
To account for the fact that accuracy for incongruent stimuli usu-

ally improves with RT, an additional and more effective late stage
of information selection is assumed. This late stage is also imple-
mented as a diffusion process, which runs in parallel with RS1 and
represents a late categorical stimulus-selection process (SS). It has
its own evidence thresholds C and D with separation c, C . D, and
drift rate (mSS). If this process reaches one of its thresholds, it ini-
tiates a transition of RS1 into a second phase RS2 of response selec-
tion by shifting the drift rate from mRS1 to mRS2. For the flanker task,
terminating in C or D is linked to target or flanker selection, respec-
tively. When the target was selected, then mRS2 is usually higher
compared to mRS1. When the flanker was selected, then the size of
mRS2 depends on the congruency of the stimulus. Selecting a con-
gruent or incongruent flanker leads to mRS2 = mRS2C . 0 or mRS2 =
mRS2D , 0, respectively. However, it can also happen that a
response is already selected during RS1, that is, before SS finishes.
In this study, we assumed symmetric thresholds for response

selection as well as for information selection (i.e., B = –A, and D =
–C). Furthermore, we assumed that target and flanker selection (i.e.,
SS terminating in C or D) leads to the same absolute magnitude of
the drift rate in RS2 (i.e., mRS2D = –mRS2C, and jmRS2Dj= jmRS2Cj =
jmRS2j). Thus, altogether, the model has seven parameters: mt, mf, a,
mSS, c, mRS2, and Ter.

Fitting Method

The models were fitted to the data by using a similar method as
in Hübner and Pelzer (2020). First, the correct responses of each
participant were summarized by five RTs resulting from five per-
centiles (.1, .3, .5, .7, .9) of the cumulative distribution function
(CDF). Because errors are often rare in congruent conditions, ac-
curacy was, as recommended by Hübner (2014), represented by
so-called conditional accuracy functions (CAFs; De Jong et al.,
1994). A CAF is usually constructed by first dividing the distribu-
tion of all RTs (correct and error RTs) by means of quintiles (i.e.,
.2, .4, .6, .8) into five equally sized intervals: {[0, .2), [.2, .4), [.4,
.6), [.6, .8), [.9, 1.0]} for each congruency condition, respectively.

Accuracy in each interval is then plotted against the mean RT in
that interval. CAFs are an informative data representation, espe-
cially for conflict tasks, because they visualize how accuracy
varies with RT. Whereas accuracy for congruent stimuli is usually
constantly high across RT, that for incongruent stimuli is usually
low for fast responses, but increases with RT.

Thus, in all, there were 30 data points for each participant (2 3
5 RTs from the CDFs, 2 3 5 RTs from the CAFs, and 2 3 5 accu-
racies from the CAFs). Next, a grid was spanned for each model
across 10 equally spaced values per model parameter domain.
Because we expected fast RTs due to the high time pressure in our
experiment, the parameter ranges were extended to the lower end,
compared to Hübner and Pelzer (2020). Then, data were simulated
for each grid point with 10,000 trials per condition. The grid was
used to find optimal sets of starting values for 20 subsequent opti-
mization processes using the SIMPLEX algorithm (Nelder &
Mead, 1965), and for which also 10,000 trials were simulated per
condition at each iteration. The two resulting best fitting parameter
values were then used as starting values for two further SIMPLEX
runs. Finally, the best fitting set of parameter values for each par-
ticipant were taken as result.

The optimization processes minimized the sum of squared per-
centage errors (SPE) between observed and predicted summary
values (Hübner & Pelzer, 2020):

SPE ¼
X

oi � si
oi

� �2

;

where oi is an observed value from the population sample, and si
the corresponding value obtained by simulation. The goodness-of-
fit criterion SPE was computed for each participant over all 30
data points.

Results and Discussion

We first computed a one-way ANOVA across the modellable
participants with framing as independent variable (gain and loss)
and reward score as dependent variable. This revealed no signifi-
cant difference, F(1, 55) = 1.14, p = .29, hp

2 = .02. The same was
the case for mean RT and accuracy as dependent variable, respec-
tively. Therefore, the data from the two framing groups were col-
lapsed for all subsequent analyses.

As we have seen in Figure 4, the performance and the corre-
sponding gained points varied largely across participants in Condi-
tion 4. This suggests that they applied different SAT strategies. To
examine the extent to which these strategies can be categorized,
we conducted an Agglomerative Hierarchical Clustering (cf.
Ketchen & Shook, 1996). It was based on the Euclidean distance
in the hyperspace spanned by all model parameters and the reward
score. The reward score was included to ensure that groups of par-
ticipants, who obtained similar scores with a similar strategy, were
identified. If only the parameter values had been clustered, then
the clustering could also have been based on variance unrelated to
the scores. It is important to note that our approach did not pro-
duce a bias, because clustering could still have failed. The number
of clusters was determined by a combination of the Elbow and Av-
erage Silhouette Method (cf. Bholowalia & Kumar, 2014).

As a result, three clusters were identified. A graphical illustra-
tion of the relations between the reward scores and the parameter
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values for each cluster is shown in Figure 6. The average scores
and parameter values for the corresponding groups are provided in
Table 3, where group numbering reflects the order of the average
reward score. For comparison, the table also provides the mean
values of the unmodellable (UM) group.
We then computed posthoc contrasts between the performance

measures and parameter values adjusted by a Monte-Carlo simula-
tion of the multivariate t-distribution. The analyses revealed that
Groups 1 and 2 differed significantly (p , .05) in score, accuracy,
and RT. Moreover, they differed in the parameters Ter, lt, lfl, and
lSS. The same differences were significant between Groups 1 and
3. Additionally, parameter a differed. Finally, Groups 2 and 3 dif-
fered significantly in RT and accuracy (but not in score), and in
the parameters Ter, a, and c. These results indicate that the groups
applied specific strategies.
For assessing the performance of each group and the corre-

sponding model fit, CDFs and CAFs were computed by percen-
tile averaging across group members. The results are shown in
Figure 7. If we consider the CDFs of the different groups, it is
obvious that Group 1 was the fastest. Because mean accuracy
(64%) was close to chance level, this indicates that this group
traded accuracy for speed to a high degree. That this was a suc-
cessful strategy under the given payoff scheme can be seen by the
fact that they collected the most points (see Table 3). When we

consider the parameter values, then we see that the high speed was
not only due to a very low response criterion, but also to a small
Ter, compared to the other groups. The short nondecisional time
indicates that little time was spent for perceptual encoding, which
also explains the small rate lt, reflecting little evidence extracted
from the target. Furthermore, members of Group 1 used little effort
for early selection, as indicated by the fact that lfl was much larger
than lt. However, the absolute values are rather small so that the
resulting congruency effect should be negligible. Indeed, as can be
seen in Figure 7, the effects are hardly visible, and, if at all, mainly
present in accuracy (CAFs). Finally, late information selection was rel-
atively slow (small lSS). Although, altogether, these parameter values
indicate that information and response selection were largely reduced,
these processes were by no means absent. As can also be seen by con-
sidering the CAFs, fast guessing played, if at all, only a minor role.

Group 2 was more cautious. Its members spent more time on
stimulus encoding (larger Ter) than those in Group 1. Moreover,
they had an efficient early selection, that is, the flankers had a
much smaller impact (lfl) than the target (lt). Late selection was
also relatively fast (larger lSS). Together, these parameter values
produced a high level of accuracy (81%) at a respectable speed.
Nevertheless, this strategy was less successful in collecting
points than that of Group 1. Obviously, this group tried hard to
respond quickly without sacrificing much accuracy.

Figure 6
Result of the Cluster Analysis for the Parameter Values of the DSTP-Model

Note. The red (black) circles, green (light gray) triangles, and blue (dark gray) squares indicate how the reward score (in thou-
sand) and parameter values of the DSTP model are related for Group (cluster) 1, 2, and 3 of participants, respectively. DSTP =
Dual-Stage Two-Phase. See the online article for the color version of this figure.

Table 3
Descriptive Statistics (Mean Values, Standard Deviations in Parentheses) for the Groups Resulting From the Cluster Analysis the
Unmodellable (UM) Group Consists of Participants, Whose Data Could Not Satisfactorily Be Modeled

Parameter

Group (N) Ter A c lt Mfl lRS2 lSS Reward score SPE RT (ms) Accuracy

1 (14) .105 .093 .243 .013 .024 .375 .527 172,003 .144 304 .641
(.026) (.019) (.091) (.009) (.016) (.177) (.242) (24,093) (.078) (53) (.097)

2 (12) .210 .093 .285 .100 .029 .373 .915 136,357 .059 399 .810
(.064) (.012) (.065) (.048) (.022) (.134) (.236) (22,161) (.036) (42) (.060)

3 (31) .250 .121 .095 .075 .078 .389 .766 118,427 .024 457 .912
(.037) (.031) (.060) (.046) (.072) (.104) (.330) (33,634) (.026) (76) (.068)

UM (7) 142,965 .386 361 .731
(47,283) (.081) (109) (.156)

Note. SPE = sum of squared percentage errors; RT = response time; UM = unmodellable.
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Group 3, the largest group, was even more cautious. They
used much time for stimulus encoding and had a relatively high
response criterion (a). Early stimulus selection was moderate,
while the criterion (c) for late stimulus selection was low. These
parameter values produced a very high accuracy (91%) at the
cost of speed. Consequently, this group collected the fewest
points. It seems that its members had a large accuracy bias and,
therefore, completely ignored the payoff scheme.
How the members in the different clusters are located in the

speed–accuracy space is shown in Figure 8. As can be seen, the
SATs of the members in Group 1 are located around the lower end
of the SATF, whereas those of Group 3 cluster around the upper
end. The SATs of the members in Group 2 are in between. The
SATs representing the unmodellable participants are widely dis-
tributed along the SATF.

Taken together, the cluster analysis identified three groups of
participants that are systematically ordered along the SATF. The
modeling also shows that the different SATs were not obtained by
merely adapting the response criterion accordingly. Rather, several
mechanisms were adapted to speed up responding or to achieve a
high accuracy. Although the different SATs represent individual
performance, it is reasonable to assume that each participant
would also have been able to realize different SATs.

General Discussion

The aim of the present study was to investigate the accuracy
bias in decision making under time pressure. Responding quickly
is usually only possible with reduced accuracy, that is, there is a
SAT (for an overview see Heitz, 2014). Therefore, an important

Figure 7
Visualization of the Performance and Goodness-of-Fit of the DSTP Model for the
Three Groups Identified by the Cluster Analysis

Note. Top panel: Cumulative distribution functions (CDFs) of the response times. Bottom
panel: conditional accuracy functions (CAFs). The points show the data, whereas the lines
represent the model predictions. DSTP = Dual-Stage Two-Phase. See the online article for
the color version of this figure.
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question is, which SAT people apply under specific payoff condi-
tions. One might think that they choose a SAT that optimizes their
reward. However, evidence indicates that this is rarely the case.
Rather, most people exhibit an accuracy bias (cf. Bogacz et al.
2006). That is, they try to avoid errors, even if this is disadvanta-
geous for their reward. A possible reason for this bias is that errors
have a negative connotation (Fiedler et al., 2020) and, therefore,
elicit negative emotions (e.g., Dignath et al., 2020). Thus, it seems
that, rather than optimizing reward, people try to optimize or, at
least, maintain their wellbeing, that is, to gain some reward while
limiting error-related negative emotions.
To investigate the role of errors and their costs for reward optimi-

zation under time pressure, we conducted a flanker-task experiment
with different payoff and framing conditions. In all conditions, the
reward for correct responses increased continuously with their
speed in the range between 650 and 150 ms. While the scheme for
correct responses was identical in our four payoff conditions, it dif-
fered for errors (see Figure 2). In Condition 1, errors could produce
costs between 0 and 500 points, depending on their RT. In Condi-
tion 2, errors had no costs at all. In Condition 3, errors slower than
400 ms produced speed-dependent costs between 0 and 250 points,
while faster errors between 150 and 400 ms resulted in gains
between 0 and 250 points. Finally, in the most extreme Condition
4, errors slower than 400 ms produced speed-dependent costs from
0 to 500 points, while fast errors between 150 and 400 ms resulted
in gains from 0 to 500 points. Thus, from Condition 1 to Condition
4, except Condition 2, it was increasingly advantageous to respond
quickly. A further exception were responses faster than 150 ms,
which resulted in zero points.
Each payoff condition applied to a corresponding group of partic-

ipants. Furthermore, each group was separated into two subgroups,

of which one was instructed according to a gain frame, whereas the
other read a loss framed instruction (Tversky & Kahneman, 1981).
The idea behind this manipulation was that the accuracy bias might
be easier to overcome in a condition where even gains are framed
as losses. However, the loss framing did not have the expected
effect. There was merely the tendency of a larger congruency effect
under a loss than under a gain framing, and a difficult to interpret
three-way interaction with payoff and congruency.

Concerning the different payoff schemes, our results show that,
on average, the different costs of errors had only a small effect on
performance. From Condition 1 to Condition 4, response speed
increased only by 31 ms, while accuracy decreased only by about
10%. Moreover, the congruency effect in the error rates was some-
what smaller in Condition 4 than in the other conditions. This,
however, was presumably not due to an increased attentional se-
lectivity (Hübner et al., 2010), but rather to a generally reduced
time spent for stimulus encoding. Evidence for this interpretation
is provided by our modeling results.

Thus, increasing the advantage of fast responses by reducing the
costs of fast errors did, on average, not substantially speed up
responding. Consequently, performance was largely suboptimal
with respect to monetary reward. This confirms the notion that peo-
ple have an accuracy bias, that is, are unwilling to make errors.
However, analyzing the individual data revealed a considerable vari-
ability across participants (see Figure 4), especially in Condition 4,
where not only fast correct responses but also fast errors produced
large benefits. Under this payoff scheme, at least some participants
overcame their bias and largely sacrificed accuracy for speed. At
this point it should be noted that we cannot exclude that some of the
slower participants did not fully comprehend the payoff scheme and
its implications for optimizing reward. Furthermore, as one reviewer
noted, some participants might have tried to avoid errors to prevent
opportunity costs, which play some role in economic decision mak-
ing (e.g., Hoskin, 1983). In the present case opportunity costs of
errors are the loss of gains that could have been obtained in case of a
correct response. Indeed, correct responses always produced more
benefits than errors, even in Condition 4. Although we cannot
exclude these alternative accounts, we think that they, if at all, did
not substantially affect our data. Rather, our results are largely in
line with an accuracy bias that has been shown to persist even if
detailed feedback and hints are provided (e.g., Fiedler et al., 2020).

We used the large range of individual differences in Condition
4, which also encompassed the SATs observed in the other condi-
tions, to estimate a representative SATF for our task. Usually,
SATFs are estimated from SATs obtained by varying time pres-
sure within participants (e.g., Dambacher & Hübner, 2015). In our
case, each SAT was based on the performance of an individual
participant. Nevertheless, we think that it is reasonable to assume
that the fitted SATF represents the range of SATs potentially real-
izable by a participant with average performance capacity.

The fitted SATF enabled us to compute speed–accuracy reward
functions for the different payoff schemes (see Figure 5). These
functions show that for all conditions, except Condition 2, where
errors had no costs, reward increased with an increasing response
speed. Whereas the increase was relatively small in Condition 1, it
was much larger in Condition 3, because of the reward for fast
errors. However, this potential increase was obviously not large
enough for motivating the participants to overcome their accuracy
bias. Only in Condition 4, where fast errors were rewarded almost

Figure 8
Location of the Members in the Three Groups and of the
Unmodellable Participants in Speed–Accuracy Space

Note. Data are from Condition 4. Sum of points in thousands. See text
for details. See the online article for the color version of this figure.
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as much as fast correct responses, at least some participants sub-
stantially sacrificed accuracy for speed and optimized their reward
this way.
The large range of performance in Condition 4 raised the ques-

tion, how the different SATs were achieved. To find an answer,
we modeled the corresponding data.
To examine the processes and mechanisms that our participants

used to realize their SAT, we modeled the data from Condition 4,
which produced the largest intraindividual differences in perform-
ance. Moreover, the range of performance also included that
observed in the other conditions. Because we used the flanker para-
digm as task, we considered current diffusion models for conflict
tasks (Hübner et al., 2010; Ulrich et al., 2015; White et al., 2011) as
potential models. For the present objective, that is, to identify groups
of participants who applied a similar strategy, the DSTP model (Hüb-
ner et al., 2010) proved to be the most suitable. Accordingly, we
used the parameter values obtained with this model for a cluster anal-
ysis, which identified three groups for 57 modellable participants.
Group 1 comprised 14 participants, who performed very fast

but with a low accuracy. The corresponding mean parameters (see
Table 3) indicate that the strategy was to spend little time and
effort for stimulus encoding and early selection, and to implement
a very low threshold. The reduced early selection did not produce
large congruency effects, because the rate of evidence generally
had little effect. However, as can be seen by considering the CAFs
in Figure 7, a congruency effect was still present. In any case,
applying this SAT strategy led to a relatively high reward.
Because in Condition 4 fast errors led to a similar reward as fast

correct responses, fast guessing might also have been a good strat-
egy. However, when we consider the CAFs for this condition (see
Figure 7), then we see little evidence that a substantial number of
participants mainly relied on fast guessing. One reason for avoid-
ing fast guesses might have been that the participants were afraid
to respond faster than 150 ms, the lower limit of the payoff
scheme, although we suspect that such thoughts probably occurred
rather rarely, if at all. It is also unlikely, that a high proportion of
fast guesses was responsible for the fact that the data of the
excluded participants could not be modeled. Obviously, the accu-
racy of these participants was higher than that of Group 1.
Group 2 (12 participants) put much effort in responding quickly

while maintaining a relatively high level of accuracy. Finally, the
members of Group 3 (31 participants) responded relatively slowly,
presumably, to attain high accuracy. It seems that they largely
ignored the payoff scheme or were unwilling to tolerate errors.
Thus, our modeling revealed that of the 57 modellable participants
in Condition 4, only the 14 in Group 1 seriously tried to optimize
their monetary reward.
Taken together, our results support the notion that the perform-

ance of people is largely guided by an accuracy bias. Although the
observed SATs varied to some extent in all of our four payoff con-
ditions, only in the most extreme condition, where fast errors
resulted in large reward, a minority of participants were willing to
substantially sacrifice accuracy for speed in order to optimize their
reward. This clear evidence of an accuracy bias was presumably
due to our continuous payoff scheme. For the mostly applied pay-
off schemes with a fixed deadline, reward is usually all or nothing,
which makes timeout errors rather salient and unpleasant. The
only way to avoid timeout errors is to speed up responding, which,
however, increases the risk of response errors. Thus, participants

trade one error type for another one (Dambacher et al., 2011). This
suggests that a payoff scheme with a short deadline and costly
timeout errors are a better way to get people to overcome their ac-
curacy bias than a continuous payoff scheme or loss framing.
However, if one wants to investigate the accuracy bias, a scheme
with a continuous reward function is more appropriate.

Our modeling revealed that the extreme SATs in Condition 4
were not achieved by merely lowering the response threshold, but
also by other mechanisms, such as reducing the time spent on
stimulus encoding, which, in turn, also affects the rate of evidence
accumulation (see also Dambacher & Hübner, 2015; Ho et al.,
2012). However, despite the high-speed pressure, we found little
evidence for fast guessing. Accordingly, the DSTP model (Hübner
et al., 2010) was flexible enough to account for most of the data,
even for those close to guessing.

The modeling further provides insights into how our partici-
pants realized their SAT and produced the great variability in per-
formance. Although some of this variability was certainly due to
individual differences in information-processing capacity, most of
the variability resulted from the application of different strategies.
However, as our study also shows, the participants hardly used
strategies that enabled them to earn as much money as possible. In
most conditions, this would have required to respond very quickly
and, accordingly, to accept many errors. That errors were largely
avoided in our experiment, although this lowered the reward, sup-
ports the hypotheses that people have an accuracy bias. A plausi-
ble reason for this bias is the negative connotation of errors
(Fiedler et al., 2020), which evokes negative emotions after each
response error (Johnson et al., 2017). Accordingly, it seems that
the strategy of most participants was to optimize their well-being
during the experiment rather than their monetary reward.
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